Chứng minh đẳng thức:                     \({\left...

Câu hỏi: Chứng minh đẳng thức:                     \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2} = {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {c + a} \right)^2}\)

A \({\left( {a + b + c} \right)^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2}\)

B \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2}\)

C \({\left( {a + b + c} \right)^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2} + {a^2} + {b^2} + {c^2}\)

D \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2}= 2{\left( {a + b} \right)^2} + 2{\left( {b + c} \right)^2} + 2{\left( {a + c} \right)^2}\)