Chứng minh đẳng thức: \({\left...
Câu hỏi: Chứng minh đẳng thức: \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2} = {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {c + a} \right)^2}\)
A \({\left( {a + b + c} \right)^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2}\)
B \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2}\)
C \({\left( {a + b + c} \right)^2}= {\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {a + c} \right)^2} + {a^2} + {b^2} + {c^2}\)
D \({\left( {a + b + c} \right)^2} + {a^2} + {b^2} + {c^2}= 2{\left( {a + b} \right)^2} + 2{\left( {b + c} \right)^2} + 2{\left( {a + c} \right)^2}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi online - Luyện tập Hằng đẳng thức - Có lời giải chi tiết