Cho hàm số liên tục trên khoảng \(\left( {a;b} \ri...
Câu hỏi: Cho hàm số liên tục trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?(1) Hàm số đạt cực trị tại điểm \({x_0}\)khi và chỉ khi \(f'\left( {{x_0}} \right) = 0\).(2) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm và có đạo hàm cấp hai tại điểm \({x_0}\) thỏa mãn điều kiện \(f'\left( {{x_0}} \right) = f\left( {{x_0}} \right) = 0\) thì điểm \({x_0}\) không phải là điểm cực trị của hàm số \(y = f\left( x \right)\).(3) Nếu \(f'\left( x \right)\) đổi dấu khi x qua điểm \({x_0}\) thì điểm \({x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right)\).(4) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm và có đạo hàm cấp hai tại điểm \({x_0}\) thỏa mãn điều kiện \(f'\left( {{x_0}} \right) = 0,f\left( {{x_0}} \right) > 0\) thì điểm \({x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right)\).
A 1
B 2
C 0
D 3
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi HK1 môn Toán lớp 12 trường THPT Chuyên ĐH Vinh - Nghệ An - Năm 2017 - 2018 (có lời giải chi tiết)