Cho tam giác ABC. Trên cạnh AC lấy điểm

Câu hỏi: Cho tam giác ABC. Trên cạnh AC lấy điểm D, trên cạnh BC lấy điểm E sao cho \(AD = 3DC,\,\,EC = 2BE\)a)      (1 điểm) Biểu diễn mỗi vectơ \(\overrightarrow {AB} ;\,\,\overrightarrow {ED} \) theo hai vectơ \(\overrightarrow {CA}  = \overrightarrow a ;\,\,\overrightarrow {CB}  = \overrightarrow b \)b)      (0,5 điểm) Tìm tập hợp điểm M sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {ME} } \right| = \left| {\overrightarrow {MB}  - \overrightarrow {MD} } \right|\).c)      (0,5 điểm) Với k là số thực tùy ý, lấy các điểm P, Q sao cho \(\overrightarrow {AP}  = k\overrightarrow {AD} ;\,\,\overrightarrow {BQ}  = k\overrightarrow {BE} .\) Chứng minh rằng trung điểm của đoạn thẳng PQ luôn thuộc một|\). đường thẳng cố định khi k thay đổi.