Cho hàm số \(f\left( x \right)\) có \(f'\left( x \...
Câu hỏi: Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) \le 0,\,\forall x \in R\) và \(f'\left( x \right) = 0\) chỉ tại một số hữu hạn điểm thuộc R. Hỏi khẳng định nào sau đây là khẳng định đúng?
A Với mọi \({x_1};\,{x_2};\,{x_3} \in R\) và \({x_1} < {x_2} < {x_3}\), ta có \(\dfrac{{f\left( {{x_1}} \right) - f\left( {{x_2}} \right)}}{{f\left( {{x_2}} \right) - f\left( {{x_3}} \right)}} < 0\).
B Với mọi \({x_1};\,{x_2};\,{x_3} \in R\) và \({x_1} > {x_2} > {x_3}\), ta có \(\dfrac{{f\left( {{x_1}} \right) - f\left( {{x_2}} \right)}}{{f\left( {{x_2}} \right) - f\left( {{x_3}} \right)}} < 0\).
C Với mọi \({x_1};\,{x_2} \in R\) và \({x_1} \ne {x_2},\) ta có \(\dfrac{{f\left( {{x_1}} \right) - f\left( {{x_2}} \right)}}{{{x_1} - {x_2}}} < 0\).
D Với mọi \({x_1};\,{x_2} \in R\) và \({x_1} \ne {x_2},\) ta có \(\dfrac{{f\left( {{x_1}} \right) - f\left( {{x_2}} \right)}}{{{x_1} - {x_2}}} > 0\).
Câu hỏi trên thuộc đề trắc nghiệm
30 bài tập trắc nghiệm sự đồng biến nghịch biến của hàm số mức độ thông hiểu