Cho \(A = \left( {1 - \dfrac{{\sqrt x }}{{1 + \sqr...

Câu hỏi: Cho \(A = \left( {1 - \dfrac{{\sqrt x }}{{1 + \sqrt x }}} \right):\left( {\dfrac{{\sqrt x  + 3}}{{\sqrt x  - 2}} + \dfrac{{\sqrt x  + 2}}{{3 - \sqrt x }} + \dfrac{{\sqrt x  + 2}}{{x - 5\sqrt x  + 6}}} \right)\) với \(x \ge 0,x \ne 4,x \ne 9.\)a) Rút gọn A. b) Tìm \(x \in Z\) để \(A \in Z\)c) Tìm x để \(A < 0.\)

A \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0} \right\}\\
c)\,\,0 \le x < 4
\end{array}\)

B \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0;4} \right\}\\
c)\,\,0 < x < 4
\end{array}\)

C \(\begin{array}{l}
a)\,\,A = \dfrac{3}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0;4} \right\}\\
c)\,\,0 \le x < 4
\end{array}\)

D \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0; \pm 4} \right\}\\
c)\,\,0 \le x < 4
\end{array}\)