a) Cho \(\sin a =  - \frac{4}{5}\), với \(\pi  &lt...

Câu hỏi: a) Cho \(\sin a =  - \frac{4}{5}\), với \(\pi  < a < \frac{{3\pi }}{2}\) . Tính \(\cos a,\,\,cos2a,\,\,\sin \left( {a + \frac{\pi }{6}} \right),\,\,\tan ( - a).\)b)  Chứng minh đẳng thức : \(2\cot 2x\cot x + 1 = {\cot ^2}x\).

A \(\begin{array}{l}a)\,\,\cos a =  - \frac{3}{5}\,\,;\,\,\cos 2a =  - \frac{7}{{25}}\\\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{ - 3 - 4\sqrt 3 }}{{10}}\,\,;\,\,\tan \left( { - a} \right) =  - \frac{4}{3}\end{array}\)

B \(\begin{array}{l}a)\,\,\cos a = \frac{3}{5}\,\,;\,\,\cos 2a =  - \frac{7}{{25}}\\\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{3 - 4\sqrt 3 }}{{10}}\,\,;\,\,\tan \left( { - a} \right) = \frac{4}{3}\end{array}\)

C \(\begin{array}{l}a)\,\,\cos a =  - \frac{3}{5}\,\,;\,\,\cos 2a = \frac{7}{{25}}\\\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{ - 3 + 4\sqrt 3 }}{{10}}\,\,;\,\,\tan \left( { - a} \right) =  - \frac{4}{3}\end{array}\)

D \(\begin{array}{l}a)\,\,\cos a = \frac{3}{5}\,\,;\,\,\cos 2a = \frac{7}{{25}}\\\sin \left( {a + \frac{\pi }{6}} \right) = \frac{{3 + 4\sqrt 3 }}{{10}}\,\,;\,\,\tan \left( { - a} \right) = \frac{4}{3}\end{array}\)