Rút gọn biểu thức: \(P = \left( {\frac{{a + \sqrt...
Câu hỏi: Rút gọn biểu thức: \(P = \left( {\frac{{a + \sqrt {{a^2} + {b^2}} }}{{a - \sqrt {{a^2} + {b^2}} }} - \frac{{a - \sqrt {{a^2} + {b^2}} }}{{a + \sqrt {{a^2} + {b^2}} }}} \right):\frac{{4\sqrt {{a^4} - {a^2}{b^2}} }}{{{b^2}}},\;\left| a \right| > \left| b \right| > 0.\)
A \(P = \left\{ \begin{array}{l}\frac{{\sqrt {{a^2} + {b^2}} }}{{\sqrt {{a^2} - {b^2}} }}\,\,\,khi\,\,\,a > 0\\ - \frac{{\sqrt {{a^2} + {b^2}} }}{{\sqrt {{a^2} - {b^2}} }}\,\,\,khi\,\,\,a < 0\end{array} \right.\)
B \(P = \left\{ \begin{array}{l}\frac{{\sqrt {{a^2} - {b^2}} }}{{\sqrt {{a^2} + {b^2}} }}\,\,\,khi\,\,\,a > 0\\ - \frac{{\sqrt {{a^2} - {b^2}} }}{{\sqrt {{a^2} + {b^2}} }}\,\,\,khi\,\,\,a < 0\end{array} \right.\)
C \(P = \left\{ \begin{array}{l}\frac{{a\sqrt {{a^2} + {b^2}} }}{{b\sqrt {{a^2} - {b^2}} }}\,\,\,khi\,\,\,a > 0\\ - \frac{{a\sqrt {{a^2} + {b^2}} }}{{b\sqrt {{a^2} - {b^2}} }}\,\,\,khi\,\,\,a < 0\end{array} \right.\)
D \(P = \left\{ \begin{array}{l}\frac{{\sqrt {{a^2} - {b^2}} }}{{b\sqrt {{a^2} + {b^2}} }}\,\,\,khi\,\,\,a > 0\\ - \frac{{\sqrt {{a^2} - {b^2}} }}{{b\sqrt {{a^2} + {b^2}} }}\,\,\,khi\,\,\,a < 0\end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi chính thức vào 10 môn Toán Trường Phổ Thông Chuyên Bắc Ninh - Hệ Chuyên (Năm học 2018 - 2019) (có lời giải chi tiết)