Cho hàm số \(y = f\left( x \right)\) liên tục trên...
Câu hỏi: Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in \mathbb{R}.\) Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { - 2019;2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)?\)
A 2012
B 2011
C 2009
D 2010
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán năm 2019 - Thầy Chí - Đề số 14