Trong tập các số phức, cho phương trình \({{z}^{2}...
Câu hỏi: Trong tập các số phức, cho phương trình \({{z}^{2}}-6z+m=0,\,\,m\in \mathbb{R}\,\,\left( 1 \right).\) Gọi \({{m}_{0}}\) là một giá trị của \(m\) đẻ phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({{z}_{1}},{{z}_{2}}\) thỏa mãn \({{z}_{1}}.\overline{{{z}_{1}}}={{z}_{2}}.\overline{{{z}_{2}}.}\) Hỏi trong khoảng \(\left( 0;20 \right)\) có bao nhiêu giá trị \({{m}_{0}}\in \mathbb{N}?\)
A \(13.\)
B \(11.\)
C \(12.\)
D \(10.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán trường THPT Chuyên Quang Trung - Bình Phước - lần 1 - năm 2018 (có lời giải chi tiết)