Giải phương trình \({x^2} - 1 = \sqrt {x + 1} .\)
Câu hỏi: Giải phương trình \({x^2} - 1 = \sqrt {x + 1} .\)
A \(S = \left\{ { - 1;\,\,\frac{{1 + \sqrt 5 }}{2}} \right\}.\)
B \(S = \left\{ { - 1;\,\,\frac{{1 - \sqrt 5 }}{2}} \right\}.\)
C \(S = \left\{ {1;\,\,\frac{{1 + \sqrt 5 }}{2}} \right\}.\)
D \(S = \left\{ {1;\,\,\frac{{1 - \sqrt 5 }}{2}} \right\}.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi chính thức vào 10 môn Toán Chuyên Tin - Hà Nội (Năm học 2019 - 2020) (có lời giải chi tiết)