Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình c...

Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=\sqrt{3},\,\,AD=\sqrt{6},\) tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với đáy. Biết hai mặt phẳng \(\left( SAB \right),\,\,\left( SAC \right)\) tạo với nhau góc \(\alpha \) thỏa mãn \(\tan \alpha =\frac{3}{2}\) và cạnh \(SC=3.\) Chiều cao của khối chóp \(S.ABCD\) là

A

 \(\frac{8}{3}.\)                     

B

 \(\frac{4}{3}.\)                     

C

\(\frac{4}{3}.\)                        

D  \(\frac{8\sqrt{3}}{3}.\)