Cho mặt phẳng \(\left( P \right):\,\,2x + 3y + z -...
Câu hỏi: Cho mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 2 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc trục \(Oz\), bán kính bằng \(\frac{2}{{\sqrt {14} }}\) và tiếp xúc với mặt phẳng \(\left( P \right)\) có phương trình:
A \({x^2} + {y^2} + {\left( {z - 1} \right)^2} = \frac{2}{7}\) hoặc \({x^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{2}{7}\)
B \({x^2} + {y^2} + {z^2} = \frac{2}{7}\) hoặc \({x^2} + {y^2} + {\left( {z - 4} \right)^2} = \frac{2}{7}\)
C \({x^2} + {y^2} + {\left( {z - 3} \right)^2} = \frac{2}{7}\) hoặc \({x^2} + {y^2} + {\left( {z - 4} \right)^2} = \frac{2}{7}\)
D \({x^2} + {y^2} + {z^2} = \frac{2}{7}\) hoặc \({x^2} + {y^2} + {\left( {z - 1} \right)^2} = \frac{2}{7}\)
Câu hỏi trên thuộc đề trắc nghiệm
- Các bài toán về tương giao mặt phẳng, đường thẳng, mặt cầu - Có lời giải chi tiết