Đề thi giữa HK2 môn Toán 8 năm 2019 Trường THCS Ki...
- Câu 1 : Tập nghiệm của phương trình x2 - x = 0 là
A. S = {0}
B. S = {0; 1}
C. S = {1}
D. Kết quả khác
- Câu 2 : Điều kiện xác định của phương trình \(\frac{{x + 2}}{{x - 1}} = \frac{{3x - 2}}{{x\left( {x - 1} \right)}}\) là
A. \(x \ne 0\)
B. \(x \ne 1\)
C. \(x \ne 0\) hoặc \(x \ne 1\)
D. \(x \ne 0\) và \(x \ne 1\)
- Câu 3 : Bất phương trình 4x - 20 > 0 có tập nghiệm là :
A. {x/ x > 5}
B. {x/ x > 5}
C. {x/ x > 4}
D. x = 5
- Câu 4 : Tìm nghiệm của phương trình (x-3)(x-5) = 0
A. x = 3
B. x = 5
C. x = 3 hoặc x = 5
D. x = 3 và x = 5
- Câu 5 : Một hình hộp chữ nhật có ba kích thước là 5cm; 8cm; 7cm. Thể tích của hình hộp chữ nhật đó là :
A. 40cm3
B. 240cm3
C. 280cm3
D. 140cm3
- Câu 6 : x = -1 là nghiệm của phương trình nào sau đây
A. 2x - 2 = 0
B. x + 1 = 0
C. x + 1 = 2x + 3
D. 2x - 1 = 0
- Câu 7 : Cho hình lăng trụ đứng đáy tam giác có kích thước 6 cm, 8 cm, 10cm và chiều cao 6cm. Thể tích của nó là:
A. 96cm3
B. 196cm3
C. 144cm3
D. 124cm3
- Câu 8 : Nghiệm của phương trình 7x - 8 = 4x + 7 là
A. 1
B. 2
C. 4
D. 5
- Câu 9 : Xác định m để phương trình sau nhận x = -3 làm nghiệm: 3x + m - x - 1 = 0
A. 5
B. 6
C. 6
D. 7
- Câu 10 : Nghiệm của phương trình 3x2- x = 0
A. 0
B. 3
C. 0, 3
D. 0, -3
- Câu 11 : Hình vẽ bên biểu diễn tập nghiệm của bất phương trình nào:
A. \(x \le 0\)
B. \(x \ge - 3\)
C. x < -3
D. x > -3
Xem thêm
- - Trắc nghiệm Toán 8 Bài 1 Liên hệ giữa thứ tự và phép cộng
- - Trắc nghiệm Bài 2 Liên hệ giữa thứ tự và phép nhân - Luyện tập - Toán 8
- - Trắc nghiệm Toán 8 Bài 1 Nhân đơn thức với đa thức
- - Trắc nghiệm Hình học 8 Bài 1 Tứ giác
- - Trắc nghiệm Toán 8 Bài 2 Nhân đa thức với đa thức
- - Trắc nghiệm Toán 8 Bài 3 Những hằng đẳng thức đáng nhớ
- - Trắc nghiệm Toán 8 Bài 4 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 5 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- - Trắc nghiệm Toán 8 Bài 7 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức