Bài tập: Hình bình hành !!
- Câu 1 : Cho hình bình hành ABCD. Gọi E là trung điếm của AD, F là trung điểm của BC. Chứng minh:
- Câu 2 : Cho hình bình hành ABCD. Gọi K, I lần lượt là trung điểm của các cạnh AB và CD. Gọi M và N lần lượt là giao điểm của AI và CK với BD. Chứng minh:
- Câu 3 : Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành
- Câu 4 : Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F. Qua O vẽ đưòng thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
- Câu 5 : Cho tam giác ABC và O là một điểm thuộc miền trong của tam giác. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC, CA và L, M, N lần lượt là trung điểm của các đoạn OA, OB, OC. Chứng minh rằng các đoạn thẳng EL, FM và DN đồng quy
- Câu 6 : Cho hình bình hành ABCD, gọi O là giao điểm hai đường chéo. Trên AB lấy điểm K, trên CD lấy điểm I sao cho AK = CI. Chứng minh ba điểm K, O, I thẳng hàng.
- Câu 7 : Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
- Câu 8 : Cho tam giác ABC. Từ một điểm E trên cạnh AC vẽ đường thẳng song song với BC cắt AB tại F và đường thăng song song vói AB cắt BC tại D. Giả sử AE = BF, chứng minh:
- Câu 9 : Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD. Chứng minh:
- Câu 10 : Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D.
Xem thêm
- - Trắc nghiệm Toán 8 Bài 1 Liên hệ giữa thứ tự và phép cộng
- - Trắc nghiệm Bài 2 Liên hệ giữa thứ tự và phép nhân - Luyện tập - Toán 8
- - Trắc nghiệm Toán 8 Bài 1 Nhân đơn thức với đa thức
- - Trắc nghiệm Hình học 8 Bài 1 Tứ giác
- - Trắc nghiệm Toán 8 Bài 2 Nhân đa thức với đa thức
- - Trắc nghiệm Toán 8 Bài 3 Những hằng đẳng thức đáng nhớ
- - Trắc nghiệm Toán 8 Bài 4 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 5 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- - Trắc nghiệm Toán 8 Bài 7 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức