Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}}...
Câu hỏi: Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {x - 1} \right)\sin 2xdx.} \) Tìm đẳng thức đúng?
A. \(I = - \left( {x - 1} \right)cos2x - \int\limits_0^{\frac{\pi }{4}} {cos2xdx.} \)
B. \(I = - \frac{1}{2}\left( {x - 1} \right)cos2x\left| \begin{array}{l}^{\frac{\pi }{4}}\\_0\end{array} \right. - \int\limits_0^{\frac{\pi }{4}} {cos2xdx.} \)
C. \(I = - \frac{1}{2}\left( {x - 1} \right)cos2x\left| \begin{array}{l}^{\frac{\pi }{4}}\\_0\end{array} \right. + \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {cos2xdx.} \)
D. \(I = - \left( {x - 1} \right)cos2x\left| \begin{array}{l}^{\frac{\pi }{4}}\\_0\end{array} \right. + \int\limits_0^{\frac{\pi }{4}} {cos2xdx.} \)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Lê Xoay lần 2