Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(...
Câu hỏi: Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {\tan x.f\left( {{{\cos }^2}x} \right){\rm{d}}x} = 1,\) \(\int\limits_e^{{e^2}} {\frac{{f\left( {{{\ln }^2}x} \right)}}{{x\ln x}}{\rm{d}}x} = 1.\) Tính tích phân \(I = \int\limits_{\frac{1}{4}}^2 {\frac{{f\left( {2x} \right)}}{x}{\rm{d}}x} .\)
A. \(I=1\)
B. \(I=2\)
C. \(I=3\)
D. \(I=4\)
Câu hỏi trên thuộc đề trắc nghiệm
40 câu trắc nghiệm Vận dụng cao Tích phân trong đề thi THPTQG