Trong không gian với hệ tọa độ Oxyz, cho
Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho \(d:\frac{x}{2} = \frac{y}{4} = \frac{{z + 3}}{1}\) , điểm\(A\left( {3;2;1} \right).\) Viết phương trình đường thẳng \(\Delta\) đi qua A cắt đồng thời vuông góc với đường thẳng d.
A. \(\left\{ \begin{array}{l} x = 3 + 3t\\ y = 2 - 5t\\ z = 1 + 4t \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x = 1 + 3t\\ y = 1 - 5t\\ z = 1 + 4t \end{array} \right.\)
C. \(\left\{ \begin{array}{l} x = 1 + 9t\\ y = 1 - 10t\\ z = 1 + 22t \end{array} \right.\)
D. \(\left\{ \begin{array}{l} x = 3 + 9t\\ y = 2 - 10t\\ z = 1 + 22t \end{array} \right.\)
Câu hỏi trên thuộc đề trắc nghiệm
Trắc nghiệm Hình học 12 Chương 3 Bài 3 Phương trình đường thẳng trong không gian