Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(...
Câu hỏi: Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(\int\limits_0^{\frac{\Pi }{4}} {\tan x.f\left( {{{\cos }^2}x} \right)dx} = 2\) và \(\int\limits_e^{{e^2}} {\frac{{f\left( {{{\ln }^2}x} \right)}}{{x\ln x}}dx} = 2\). Tính \(\int\limits_{\frac{1}{4}}^2 {\frac{{f\left( {2x} \right)}}{x}dx} .\)
A. 0
B. 1
C. 4
D. 8
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT Quốc Gia năm 2019 môn Toán Trường THPT Hoàng Hoa Thám