Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng...

Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l}x = - 2 + 2t\\y = 1 + t\\z = 1 - t\end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.

A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)

B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)

C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)

D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)