Có bao nhiêu phần tử trong mạch điện?
Câu hỏi: Có bao nhiêu phần tử trong mạch điện?![]()
A. 1 cầu chì, 1 ổ cắm, 1 công tắc 2 cực, 1 bóng đèn sợi đốt, dây dẫn, nguồn điện xoay chiều.
B. 2 cầu chì, 1 ổ cắm, 1 công tắc 2 cực, 1 bóng đèn sợi đốt, dây dẫn, nguồn điện xoay chiều.
C. 2 cầu chì, 1 ổ cắm, 2 công tắc 2 cực, 1 bóng đèn sợi đốt, dây dẫn, nguồn điện xoay chiều.
D. Tất cả đều đúng
Câu hỏi trên thuộc đề trắc nghiệm
Trắc nghiệm Công nghệ 8 Bài 57 Thực hành Vẽ sơ đồ lắp mạch điện