Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạn...
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=y (y>0) và vuông góc với mặt đáy(ABCD). Trên cạnh AD lấy điểm M và đặt AM=x (0<x<a). Tính thể tích lớn nhất V.max của khối chóp S.ABCM biết \({x^2} + {y^2} = {a^2}.\)
A. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{3}\)
B. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{8}\)
C. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{9}\)
D. \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{27}\)
Câu hỏi trên thuộc đề trắc nghiệm
Trắc nghiệm Hình học 12 Chương 1 Khối đa diện