Cho hàm số f(x). Biết f(0) = 4 và \(f'\left( x \ri...
Câu hỏi: Cho hàm số f(x). Biết f(0) = 4 và \(f'\left( x \right) = 2{\cos ^2}x + 3,\,\forall x \in R\), khi đó \(\int\limits_0^{\frac{\pi }{4}} {f\left( x \right)} {\rm{d}}x\) bằng
A. \(\frac{{{\pi ^2} + 2}}{8}\)
B. \(\frac{{{\pi ^2} + 8\pi + 8}}{8}\)
C. \(\frac{{{\pi ^2} + 8\pi + 2}}{8}\)
D. \(\frac{{{\pi ^2} + 6\pi + 8}}{8}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi THPT QG môn Toán năm 2019 - Mã đề 102