Cho hình chóp O.ABC có \(OA = OB = OC = a\), \(\wi...
Câu hỏi: Cho hình chóp O.ABC có \(OA = OB = OC = a\), \(\widehat {{\rm{AOB}}} = {60^0},\widehat {{\rm{BOC}}} = {90^0},\widehat {{\rm{COA}}} = {120^0}.\) Gọi S là trung điểm của OB. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là
A. \(\frac{a}{4}\)
B. \(\frac{{a\sqrt 7 }}{4}\)
C. \(\frac{{a\sqrt 7 }}{2}\)
D. \(\frac{a}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Chuyên ĐHSP Hà Nội lần 1