Tính tích phân \(I = \int\limits_0^{\rm{\pi }} {x\...
Câu hỏi: Tính tích phân \(I = \int\limits_0^{\rm{\pi }} {x\cos x{\rm{d}}x} \) bằng cách đặt \(\left\{ \begin{array}{l}
u = x\\
{\rm{d}}v = \cos x{\rm{d}}x
\end{array} \right.\). Mệnh đề nào dưới đây đúng?
A. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. + \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
B. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
C. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\cos x{\rm{d}}x} \)
D. \(I = x\cos x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
Câu hỏi trên thuộc đề trắc nghiệm
Đề trắc nghiệm Chương 3 Giải tích 12 Trường THPT TX Quảng Trị năm học 2018 - 2019