Cho hàm số \(y=f(x)\) có đạo hàm cấp hai trên \((a...
Câu hỏi: Cho hàm số \(y=f(x)\) có đạo hàm cấp hai trên \((a;b)\) và \({x_0} \in \left( {a;b} \right)\) khẳng định nào sau đây là khẳng định đúng?
A. Nếu \(f'\left( {{x_0}} \right) = 0\) và \(f\left( {{x_0}} \right) > 0\) thì \(x_0\) là điểm cực tiểu của hàm số.
B. Nếu hàm số đạt cực tiểu tại \(x_0\) thì \(f'\left( {{x_0}} \right) = 0\) và \(f\left( {{x_0}} \right) > 0\).
C. Nếu \(f'\left( {{x_0}} \right) = 0\) và \(f\left( {{x_0}} \right) < 0\) thì \(x_0\) là điểm cực tiểu của hàm số.
D. Nếu \(x_0\) là điểm cực trị của hàm số thì \(f'\left( {{x_0}} \right) = 0\) và \(f\left( {{x_0}} \right) \ne 0\).
Câu hỏi trên thuộc đề trắc nghiệm
Đề trắc nghiệm ôn thi học kì 1 môn Toán lớp 12 năm 2018 - 2019 có lời giải - Đề số 3