Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Câu hỏi: Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
A. e4
B. e3
C. \({e^{\frac{{15}}{{13}}}}\)
D. e5
Đáp án
A
- Hướng dẫn giải
Ta có: \({e^{2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}}} = m \Leftrightarrow 2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2} = \ln m\)
Xét \(g\left( x \right) = 2{f^3}\left( x \right) - \frac{{13}}{2}{f^2}\left( x \right) + 7f\left( x \right) + \frac{3}{2}\) có
\(g'\left( x \right) = 6{f^2}\left( x \right).f'\left( x \right) - 13f\left( x \right).f'\left( x \right) + 7f'\left( x \right) = f'\left( x \right)\left[ {6{f^2}\left( x \right) - 13f\left( x \right) + 7} \right]\)
Suy ra \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
f'\left( x \right) = 0\\
6{f^2}\left( x \right) - 13f\left( x \right) + 7 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
f'\left( x \right) = 0\\
f\left( x \right) = 1\\
f\left( x \right) = \frac{7}{6}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1;x = 3\\
x = 1;x = {x_1} > 3\\
x = {x_2} < 1
\end{array} \right.\)
Xét g(x) trên đoạn [0;2].
+ Trong khoảng (0;1) thì \(f'\left( x \right) < 0,f\left( x \right) > 1,f\left( x \right) < \frac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \frac{7}{6}} \right) > 0\) hay g'(x) > 0
+ Trong khoảng (1;2) thì \(f'\left( x \right) > 0,f\left( x \right) > 1,f\left( x \right) < \frac{7}{6}\) nên \(f'\left( x \right)\left( {f\left( x \right) - 1} \right)\left( {f\left( x \right) - \frac{7}{6}} \right) < 0\) hay g'(x) < 0
Từ đó ta có bảng biến thiên của g(x) như sau:
Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{[0;2]} g\left( x \right) = 4.\)
Vậy yêu cầu bài toán thỏa nếu và chỉ nếu \(\ln m \le 4 \Leftrightarrow m \le {e^4}\) hay giá trị lớn nhất của m là m = e4
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Sở GD & ĐT Bắc Ninh lần 2