Cho hình chóp S.ABCD có đáy ABCD là hình bình hành...
Câu hỏi: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC. Mặt phẳng \((\alpha)\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của tỷ số \(\dfrac{V_1}V\)?
A. \(\frac{2}{3}\)
B. \(\frac{1}{8}\)
C. \(\frac{1}{3}\)
D. \(\frac{3}{8}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Lai