Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(...
Câu hỏi: Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(\int\limits_0^{\frac{\pi }{2}} {\tan xf\left( {{{\cos }^2}x} \right)dx} = \int\limits_1^8 {\frac{{f\left( {\sqrt[3]{x}} \right)}}{x}} dx = 6\). Tính tích phân \(\int\limits_{\frac{1}{2}}^{\sqrt 2 } {\frac{{f\left( {{x^2}} \right)}}{x}dx} \)
A. 4
B. 6
C. 7
D. 10
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Chuyên KHTN Hà Nội lần 2