Cho các hàm số \(u = u\left( x \right),\,\,v = v\l...

Câu hỏi: Cho các hàm số \(u = u\left( x \right),\,\,v = v\left( x \right)\) có đạo hàm trên khoảng J và \(v\left( x \right) \ne 0\) với mọi \(x \in J\). Mệnh đề nào sau đây SAI?

A. \(\left[ {u\left( x \right).v\left( x \right)} \right]' = u'\left( x \right).v\left( x \right) + v'\left( x \right).u\left( x \right)\)

B. \({\left[ {\frac{{u\left( x \right)}}{{v\left( x \right)}}} \right]'} = \frac{{u'\left( x \right).v\left( x \right) - v'\left( x \right).u\left( x \right)}}{{{v^2}\left( x \right)}}\)

C. \(\left[ {u\left( x \right) + v\left( x \right)} \right]' = u'\left( x \right) + v'\left( x \right)\)

D. \({\left[ {\frac{1}{{v\left( x \right)}}} \right]'} = \frac{{v'\left( x \right)}}{{{v^2}\left( x \right)}}\)