Cho hàm số \(y=f(x)\) liên tục trên R và có đạo hà...
Câu hỏi: Cho hàm số \(y=f(x)\) liên tục trên R và có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 2} \right)\left( {{x^2} - 6x + m} \right)\) với mọi \(x \in R.\) Có bao nhiêu số nguyên m thuộc đoạn [-2019;2019] để hàm số \(g\left( x \right) = f\left( {1 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)?\)
A. 2010
B. 2012
C. 2011
D. 2009
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Sở GD & ĐT Bắc Ninh lần 2