Cho hàm số y = f(x) liên tục trên [a; b] và có một...
Câu hỏi: Cho hàm số y = f(x) liên tục trên [a; b] và có một nguyên hàm là hàm số F(x) trên \(\left[ {a;b} \right],a < c < b\).Khẳng định nào sau đây SAI:
A. \(\int\limits_a^b {f\left( x \right)dx = - } \int\limits_b^a {f\left( x \right)dx} \)
B. \(\int {f'\left( x \right)dx = f\left( x \right) + C} \)
C. \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_b^c {f\left( x \right)dx} \)
D. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi HK2 môn Toán 12 Trường THPT Tân Hiệp - Kiên Giang năm học 2017 - 2018