Cho Elip \((E):\,\,4{x^2} + 9{y^2} = 36\). Tọa độ...

Câu hỏi: Cho Elip \((E):\,\,4{x^2} + 9{y^2} = 36\). Tọa độ điểm \(M \in (E)\) sao cho \(M\) nhìn \({F_1}, {F_2}\) dưới 1 góc vuông là: 

A \({M_1}\left( {{3 \over {\sqrt 5 }};1} \right);{M_2}\left( { - {3 \over {\sqrt 5 }};1} \right);{M_3}\left( {{3 \over {\sqrt 5 }}; - 1} \right);{M_4}\left( { - {3 \over {\sqrt 5 }}; - 1} \right)\)

B \({M_1}\left( {{2 \over {\sqrt 5 }};{4 \over {\sqrt 5 }}} \right);{M_2}\left( { - {2 \over {\sqrt 5 }};{4 \over {\sqrt 5 }}} \right);{M_3}\left( {{2 \over {\sqrt 5 }}; - {4 \over {\sqrt 5 }}} \right);{M_4}\left( { - {2 \over {\sqrt 5 }}; - {4 \over {\sqrt 5 }}} \right)\)

C \({M_1}\left( {{3 \over {\sqrt 5 }};{4 \over {\sqrt 5 }}} \right);{M_2}\left( { - {3 \over {\sqrt 5 }};{4 \over {\sqrt 5 }}} \right);{M_3}\left( {{3 \over {\sqrt 5 }}; - {4 \over {\sqrt 5 }}} \right);{M_4}\left( { - {3 \over {\sqrt 5 }}; - {4 \over {\sqrt 5 }}} \right)\)

D \({M_1}\left( {1;{3 \over {\sqrt 5 }}} \right);{M_2}\left( { - 1;{3 \over {\sqrt 5 }}} \right);{M_3}\left( {1; - {3 \over {\sqrt 5 }}} \right);{M_4}\left( { - 1; - {3 \over {\sqrt 5 }}} \right)\)