Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác...
Câu hỏi: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB=AC=a.\) Hình chiếu vuông góc \(H\) của \(S\) trên mặt đáy \(\left( ABC \right)\) trùng với tâm đường tròn ngoại tiếp tam giác \(ABC\) và \(SH=\frac{a\sqrt{6}}{2}.\) Gọi \(\varphi \) là góc giữa hai đường thẳng \(SB\) và \(AC.\) Khi đó
A \(\cos \varphi =\frac{\sqrt{14}}{4}.\)
B \(\cos \varphi =\sqrt{7}.\)
C \(\cos \varphi =\frac{\sqrt{2}}{4}.\)
D \(\cos \varphi =\frac{\sqrt{7}}{7}.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán THPT Chuyên Bắc Giang - lần 1 - năm 2018 (có lời giải chi tiết)