Cho Elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}}...

Câu hỏi: Cho Elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1\). Tọa độ điểm \(M \in (E)\) sao cho \(\widehat {{F_1}M{F_2}} = {90^0}\) là: 

A \({M_1}\left( {{{5\sqrt {357} } \over {21}};{{4\sqrt {21} } \over {21}}} \right);{M_2}\left( {{{5\sqrt {357} } \over {21}}; - {{4\sqrt {21} } \over {21}}} \right);{M_3}\left( { - {{5\sqrt {357} } \over {21}};{{4\sqrt {21} } \over {21}}} \right);{M_4}\left( { - {{5\sqrt {357} } \over {21}}; - {{4\sqrt {21} } \over {21}}} \right)\).

B \({M_1}\left( {{4 \over {21}};{5 \over {21}}} \right);{M_2}\left( { - {4 \over {21}};{5 \over {21}}} \right);{M_3}\left( {{4 \over {21}}; - {5 \over {21}}} \right);{M_4}\left( { - {4 \over {21}}; - {5 \over {21}}} \right)\).

C \({M_1}\left( {{{5\sqrt {357} } \over {21}};1} \right);{M_2}\left( {{{5\sqrt {357} } \over {21}}; - 1} \right);{M_3}\left( { - {{5\sqrt {357} } \over {21}};1} \right);{M_4}\left( { - {{5\sqrt {357} } \over {21}}; - 1} \right)\).

D \({M_1}\left( {{4 \over {21}};1} \right);{M_2}\left( { - {4 \over {21}};1} \right);{M_3}\left( {{4 \over {21}}; - 1} \right);{M_4}\left( { - {4 \over {21}}; - 1} \right)\).