Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình c...

Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) có \(AB = a,\,\,AD = 2a,\,\,SA\) vuông góc với đáy và \(SA = a\). Gọi \(\left( P \right)\) là mặt phẳng qua \(SO\) và vuông góc với \(\left( {SAD} \right)\). Diện tích thiết diện của \(\left( P \right)\) và hình chóp \(S.ABCD\) bằng:

A \(\dfrac{{{a^2}}}{2}\)           

B \({a^2}\dfrac{{\sqrt 3 }}{2}\)                                         

C \({a^2}\)                                 

D \({a^2}\dfrac{{\sqrt 2 }}{2}\)