Cho \(\Delta ABC,\) gọi \(I\) là điểm trên cạnh \...
Câu hỏi: Cho \(\Delta ABC,\) gọi \(I\) là điểm trên cạnh \(BC\) sao cho \(2CI = 3BI.\) Gọi \(F\) là điểm trên cạnh \(BC\) kéo dài sao cho \(5FB = 2FC.\) 1. Tính \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} .\) 2. Gọi \(G\) là trọng tâm \(\Delta ABC.\) Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} .\)
A \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} - \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)
B \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} + \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)
C \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)
D \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm
- Chứng minh đẳng thức véc tơ, phân tích véc tơ - có lời giải chi tiết