Cho \(\Delta ABC,\) gọi \(I\)  là điểm trên cạnh \...

Câu hỏi: Cho \(\Delta ABC,\) gọi \(I\)  là điểm trên cạnh \(BC\)  sao cho \(2CI = 3BI.\) Gọi \(F\)  là điểm trên cạnh \(BC\)  kéo dài sao cho \(5FB = 2FC.\) 1. Tính \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} \) theo \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} .\)  2. Gọi \(G\)  là trọng tâm \(\Delta ABC.\) Tính \(\overrightarrow {AG} \) theo \(\overrightarrow {AI} ,\,\,\overrightarrow {AF} .\)  

A \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} - \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)

B \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} + \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)

C \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)

D \(\begin{array}{l}
1)\,\,\,\overrightarrow {AI} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} ;\,\,\,\overrightarrow {AF} = \frac{5}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \\
2)\,\,\,\overrightarrow {AG} = \frac{{35}}{{48}}\overrightarrow {AI} - \frac{1}{{16}}\overrightarrow {AF} .
\end{array}\)