Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp đườn...
Câu hỏi: Cho tam giác \(ABC\) có ba góc nhọn, nội tiếp đường tròn \(\left( O \right),\;\;AB > AC\) và các đường cao \(AD,\;\;BE,\;\;CF\) cắt nhau tại \(H.\) a) Gọi \(I\) là trung điểm của \(AH,\) chứng minh \(AEHF\) nội tiếp đường tròn \(\left( I \right).\)b) Chứng minh \(DB.DC = DA.DH.\)c) Gọi \(K\) là giao điểm khác \(A\) của hai đường tròn \(\left( O \right)\) và \(\left( I \right).\) Chứng minh \(OI//HK.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi chính thức vào 10 môn Toán Sở GD&ĐT Sóc Trăng (Năm học 2018 - 2019) (có lời giải chi tiết)