Cho Elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}}...
Câu hỏi: Cho Elip \((E):\,\,{{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1\). Tọa độ điểm \(M \in (E)\) sao cho \(\widehat {{F_1}M{F_2}} = {120^0}\) là:
A \({M_1}\left( {\sqrt {\frac{{75}}{7}} ;\sqrt {\frac{6}{7}} } \right);\,\,{M_2}\left( {\sqrt {\frac{{75}}{7}} ; - \frac{6}{7}} \right);\,\,{M_3}\left( { - \sqrt {\frac{{75}}{7}} ;\sqrt {\frac{6}{7}} } \right);\,\,{M_4}\left( { - \sqrt {\frac{{75}}{7}} ; - \sqrt {\frac{6}{7}} } \right)\)
B \({M_1}\left( {\sqrt {{5 \over 7}} ;\sqrt {{6 \over 7}} } \right);\,\,{M_2}\left( {\sqrt {{5 \over 7}} ; - \sqrt {{6 \over 7}} } \right);\,\,{M_3}\left( { - \sqrt {{5 \over 7}} ;\sqrt {{6 \over 7}} } \right);\,\,{M_4}\left( { - \sqrt {{5 \over 7}} ; - \sqrt {{6 \over 7}} } \right)\)
C \({M_1}\left( {\sqrt {{{75} \over {17}}} ;\sqrt {{{16} \over {17}}} } \right);\,\,{M_2}\left( {\sqrt {{{75} \over {17}}} ; - \sqrt {{{16} \over {17}}} } \right);\,\,{M_3}\left( { - \sqrt {{{75} \over {17}}} ;\sqrt {{{16} \over {17}}} } \right);\,\,{M_4}\left( { - \sqrt {{{75} \over {17}}} ; - \sqrt {{{16} \over {17}}} } \right)\)
D \({M_1}\left( {\sqrt {{{75} \over 7}} ;\sqrt {{{16} \over 7}} } \right);\,\,{M_2}\left( {\sqrt {{{75} \over 7}} ; - \sqrt {{{16} \over 7}} } \right);\,\,{M_3}\left( { - \sqrt {{{75} \over 7}} ;\sqrt {{{16} \over 7}} } \right);\,\,{M_4}\left( { - \sqrt {{{75} \over 7}} ; - \sqrt {{{16} \over 7}} } \right)\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi online - Tìm điểm thuộc Elip thỏa mãn điều kiện cho trước Có lời giải chi tiết.