Cho hypebol \((H):9{x^2} - 16{y^2} = 144\). Tìm đi...

Câu hỏi: Cho hypebol \((H):9{x^2} - 16{y^2} = 144\). Tìm điểm \(M \in (H)\) sao cho: M nhìn hai tiêu điểm dưới một góc vuông

A \({M_1}\left( {\frac{{4\sqrt {34} }}{5};\frac{9}{5}} \right);{M_2}\left( { - \frac{{4\sqrt {34} }}{5};\frac{9}{5}} \right);{M_3}\left( {\frac{{4\sqrt {34} }}{5}; - \frac{9}{5}} \right);{M_4}\left( { - \frac{{4\sqrt {34} }}{5}; - \frac{9}{5}} \right)\).

B \({M_1}\left( {\frac{{\sqrt {34} }}{5};\frac{9}{5}} \right);{M_2}\left( { - \frac{{\sqrt {34} }}{5};\frac{9}{5}} \right);{M_3}\left( {\frac{{\sqrt {34} }}{5}; - \frac{9}{5}} \right);{M_4}\left( { - \frac{{\sqrt {34} }}{5}; - \frac{9}{5}} \right)\).

C \({M_1}\left( {\frac{{4\sqrt {17} }}{5};\frac{{19}}{5}} \right);{M_2}\left( { - \frac{{4\sqrt {17} }}{5};\frac{{19}}{5}} \right);{M_3}\left( {\frac{{4\sqrt {17} }}{5}; - \frac{{19}}{5}} \right);{M_4}\left( { - \frac{{4\sqrt {17} }}{5}; - \frac{{19}}{5}} \right)\).

D \({M_1}\left( {\frac{{4\sqrt {34} }}{5};\frac{{19}}{5}} \right);{M_2}\left( { - \frac{{4\sqrt {34} }}{5};\frac{{19}}{5}} \right);{M_3}\left( {\frac{{4\sqrt {34} }}{5}; - \frac{{19}}{5}} \right);{M_4}\left( { - \frac{{4\sqrt {34} }}{5}; - \frac{{19}}{5}} \right)\).