Trong không gian \(Oxyz\), cho điểm \(M\left( {0;2...

Câu hỏi: Trong không gian \(Oxyz\), cho điểm \(M\left( {0;2;0} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 4 + 3t\\y = 2 + t\\z =  - 1 + t\end{array} \right.\). Đường thẳng đi qua \(M\), cắt và vuông góc với \(d\) có phương trình là 

A

\(\dfrac{x}{{ - 1}} = \dfrac{{y - 2}}{1} = \dfrac{z}{2}\)              

 


B \(\dfrac{{x - 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 2}}\)        

C \(\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{1} = \dfrac{z}{2}\)             

D  \(\dfrac{x}{{ - 1}} = \dfrac{y}{1} = \dfrac{{z - 1}}{2}\)