Trong không gian với hệ tọa độ \(Oxyz,\) cho hai đ...
Câu hỏi: Trong không gian với hệ tọa độ \(Oxyz,\) cho hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{-\,1}\) và \({{d}_{2}}:\left\{ \begin{align} x=2-t \\ y=3-t \\ z=-\,2 \\ \end{align} \right..\) Mặt phẳng \(\left( P \right):x+by+cz+d=0\) (với \(b,\,\,c,\,\,d\in \mathbb{R}\)) vuông góc với đường thẳng \({{d}_{1}}\) và chắn \({{d}_{1}},\,\,{{d}_{2}}\) đoạn thẳng có độ dài nhỏ nhất. Tổng \(b+c+d\) bằng
A
\(-\,7.\)
B
\(1.\)
C
\(-\,15.\)
D \(-\,12.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán THPT Chuyên Hoàng Văn Thụ - Hòa Bình - lần 1 - năm 2018 (có lời giải chi tiết)