Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình b...

Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Hai điểm \(M,N\) thuộc các cạnh \(AB\) và \(AD\) (M, N không trùng với A, B, D). sao cho \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Kí hiệu \(V,\,{V_1}\) lần lượt là thể tích của các khối chóp \(S.ABCD\) và \(S.MBCDN\). Tìm giá trị lớn nhất của tỉ số  \(\dfrac{{{V_1}}}{V}\). 

A \(\dfrac{2}{3}\).

B \(\dfrac{3}{4}\)

C \(\dfrac{1}{6}\).

D \(\dfrac{{14}}{{17}}\).