Phân tích đa thức thành nhân tử:\(\eqalign{& a...

Câu hỏi: Phân tích đa thức thành nhân tử:\(\eqalign{& a)\;16{x^4}\left( {x - y} \right) - x + y  \cr & c)\;16{x^3} - 54{y^3}  \cr & e)\;{x^2} - 9 + \left( {2x + 7} \right)\left( {3 - x} \right)  \cr & g)\;4{x^3} - 4{x^2} - x + 1 \cr} \)             \(\eqalign{& b)\;2{x^3}y - 2x{y^3} - 4x{y^2} - 2xy  \cr  & d)\;{x^3} + {x^2} - 4x - 4  \cr & f)\;{x^2} - 2x + 1 - 4{y^2}  \cr & h)\;{x^4} - 4{x^3} + 4{x^2} \cr} \)

A \(\eqalign{& a)\;\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right)\left( {x - y} \right).  \cr & b)\;2xy\left( {x - y - 1} \right)\left( {x + y + 1} \right).  \cr & c)\;2\left( {2x - 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right).  \cr & d)\;\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right).  \cr & e)\left( {x - 3} \right)\left( { - x - 4} \right).  \cr & f)\left( {x - 2y - 1} \right)\left( {x + 2y - 1} \right).  \cr & g)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {x - 1} \right).  \cr & h)\;{x^2}{\left( {x - 2} \right)^2}. \cr} \)

B \(\eqalign{& a)\;\left( {2x + 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right)\left( {x - y} \right).  \cr & b)\;2xy\left( {x - y - 1} \right)\left( {x + y + 1} \right).  \cr & c)\;2\left( {2x + 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right).  \cr & d)\;\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right).  \cr & e)\left( {x - 3} \right)\left( { - x - 4} \right).  \cr & f)\left( {x - 2y - 1} \right)\left( {x + 2y - 1} \right).  \cr & g)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {x - 1} \right).  \cr & h)\;{x^2}{\left( {x - 2} \right)^2}. \cr} \)

C \(\eqalign{& a)\;\left( {2x - 1} \right)\left( {2x - 1} \right)\left( {4{x^2} + 1} \right)\left( {x + y} \right).  \cr & b)\;2xy\left( {x - y - 1} \right)\left( {x + y + 1} \right).  \cr & c)\;2\left( {2x + 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right).  \cr & d)\;\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right).  \cr & e)\left( {x - 3} \right)\left( { - x - 4} \right).  \cr & f)\left( {x - 2y - 1} \right)\left( {x + 2y - 1} \right).  \cr & g)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {x - 1} \right).  \cr & h)\;{x^2}{\left( {x - 2} \right)^2}. \cr} \)

D \(\eqalign{& a)\;\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right)\left( {x - y} \right).  \cr & b)\;2xy\left( {x - y - 1} \right)\left( {x - y - 1} \right).  \cr & c)\;2\left( {2x - 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right).  \cr & d)\;\left( {x - 2} \right)\left( {x - 2} \right)\left( {x + 1} \right).  \cr & e)\left( {x - 3} \right)\left( { - x - 4} \right).  \cr & f)\left( {x - 2y - 1} \right)\left( {x + 2y - 1} \right).  \cr & g)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {x - 1} \right).  \cr & h)\;{x^2}{\left( {x - 2} \right)^2}. \cr} \)