Cho \(F\left( x \right) = \left( {x - 1} \right).{...
Câu hỏi: Cho \(F\left( x \right) = \left( {x - 1} \right).{e^x}\) là một nguyên hàm của hàm số \(f\left( x \right).{e^{2x}}\). Tìm nguyên hàm của hàm số \(f'\left( x \right).{e^{2x}}\).
A. \(\int {f'(x){e^{2x}}} {\rm{d}}x = (4 - 2x){e^x} + C\)
B. \(\int {f'(x){e^{2x}}} {\rm{d}}x = \frac{{2 - x}}{2}.{e^x} + C\)
C. \(\int {f'(x){e^{2x}}} {\rm{d}}x = \left( {2 - x} \right).{e^x} + C\)
D. \(\int {f'(x){e^{2x}}} {\rm{d}}x = \left( {x - 2} \right).{e^x} + C\)
Câu hỏi trên thuộc đề trắc nghiệm
40 câu trắc nghiệm chuyên đề Nguyên hàm - Tích phân Giải tích lớp 12 năm học 2018 - 2019