Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình v...
Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a.\) Cạnh bên \(SA\) vuông góc với \(mp\,\,\left( ABCD \right),\,\,SA=a\sqrt{2}.\) Gọi \(\left( \alpha \right)\) là mặt phẳng qua \(A\) và vuông góc với \(SB.\) Mặt phẳng \(\left( \alpha \right)\) cắt hình chóp theo một thiết diện có diện tích \(S.\) Tính \(S\) theo \(a.\)
A \(S=\frac{5{{a}^{2}}\sqrt{6}}{12}.\)
B \(S=\frac{5{{a}^{2}}\sqrt{6}}{18}.\)
C \(S=\frac{5{{a}^{2}}\sqrt{6}}{3}.\) \
D \(S=\frac{5{{a}^{2}}\sqrt{6}}{5}.\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi online - Tìm thiết diện qua một điểm và vuông góc với một đường thẳng - Có lời giải chi tiết