Cho hypebol \((H):4{x^2} - {y^2} = 4\). Tìm điểm \...

Câu hỏi: Cho hypebol \((H):4{x^2} - {y^2} = 4\). Tìm điểm \(M \in (H)\) sao cho: M nhìn hai tiêu điểm dưới một góc \({120^0}\). 

A \({M_1}\left( {\sqrt {\dfrac{{48}}{5}} ;\sqrt {\frac{{17}}{5}} } \right);{M_2}\left( { - \sqrt {\dfrac{{48}}{5}} ;\sqrt {\frac{{17}}{5}} } \right);\) \({M_3}\left( {\sqrt {\dfrac{{48}}{5}} ; - \sqrt {\frac{{17}}{5}} } \right);{M_4}\left( { - \sqrt {\dfrac{{48}}{5}} ; - \sqrt {\frac{{17}}{5}} } \right)\).

B \({M_1}\left( {\sqrt {\dfrac{{19}}{{15}}} ;\dfrac{4}{{\sqrt {15} }}} \right);{M_2}\left( { - \sqrt {\dfrac{{19}}{{15}}} ;\dfrac{4}{{\sqrt {15} }}} \right)\)\(;{M_3}\left( {\sqrt {\dfrac{{19}}{{15}}} ; - \dfrac{4}{{\sqrt {15} }}} \right);{M_4}\left( { - \sqrt {\dfrac{{19}}{{15}}} ; - \dfrac{4}{{\sqrt {15} }}} \right)\).

C \({M_1}\left( {\sqrt 3 ;2\sqrt 2 } \right);{M_2}\left( { - \sqrt 3 ;2\sqrt 2 } \right);\) \({M_3}\left( {\sqrt 3 ; - 2\sqrt 2 } \right);{M_4}\left( { - \sqrt 3 ; - 2\sqrt 2 } \right)\).

D \({M_1}\left( {2\sqrt 2 ;\sqrt 3 } \right);{M_2}\left( { - 2\sqrt 2 ;\sqrt 3 } \right);\) \({M_3}\left( {2\sqrt 2 ; - \sqrt 3 } \right);{M_4}\left( { - 2\sqrt 2 ; - \sqrt 3 } \right)\).