Tính:\(\begin{array}{l}a)\,\,\frac{x}{y}\sqrt...
Câu hỏi: Tính:\(\begin{array}{l}
a)\,\,\frac{x}{y}\sqrt {\frac{{{x^2}}}{{{y^4}}}} \,\,\left( {x > 0,y \ne 0} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b)\,\,5xy\sqrt {\frac{{25{x^2}}}{{{y^6}}}} \,\,\left( {x < 0,y > 0} \right)\\
c)\,\,a{b^2}\sqrt {\frac{3}{{{a^2}{b^4}}}} \,\,\left( {a < 0} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,d)\,\,\sqrt {\frac{{9 + 12a + 4{a^2}}}{{{b^2}}}} \,\,\left( {a \ge - \frac{3}{2},\,\,\,b < 0} \right)
\end{array}\)
A \(\begin{array}{l}
a)\,\,\frac{{{x^2}}}{{{y^3}}} & & & b)\,\, \frac{{25{x^2}}}{y}\\
c)\,\, - \sqrt 3 & & d)\,\,\frac{{3 + 2a}}{{ - b}}
\end{array}\)
B \(\begin{array}{l}
a)\,\,\frac{{{x^2}}}{{{y^3}}} & & & b)\,\, - \frac{{25{x^2}}}{y^2}\\
c)\,\, - \sqrt 3 & & d)\,\,\frac{{3 + 2a}}{{ - b}}
\end{array}\)
C \(\begin{array}{l}
a)\,\,\frac{{{x^2}}}{{{y^3}}} & & & b)\,\, - \frac{{25{x^2}}}{y}\\
c)\,\, \sqrt 3 & & d)\,\,\frac{{3 + 2a}}{{ - b}}
\end{array}\)
D \(\begin{array}{l}
a)\,\,\frac{{{x^2}}}{{{y^3}}} & & & b)\,\, - \frac{{25{x^2}}}{y}\\
c)\,\, -\sqrt 3 & & d)\,\,\frac{{3 + 2a}}{{ b}}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm
- Liên hệ giữa phép chia và phép khai phương