Cho tứ diện ABCD có mặt cầu nội tiếp là \(\left( {...
Câu hỏi: Cho tứ diện ABCD có mặt cầu nội tiếp là \(\left( {{S_1}} \right)\) và mặt cầu ngoại tiếp là \(\left( {{S_2}} \right)\). Một hình lập phương ngoại tiếp \(\left( {{S_2}} \right)\) và nội tiếp trong mặt cầu \(\left( {{S_3}} \right)\). Gọi \({r_1},\,\,{r_2},\,\,{r_3}\) lần lượt là bán kính các mặt cầu \(\left( {{S_1}} \right);\,\,\left( {{S_2}} \right);\,\,\left( {{S_3}} \right)\). Khẳng định nào sau đây đúng?
A \(\frac{{{r_1}}}{{{r_2}}} = \frac{2}{3}\) và \(\frac{{{r_2}}}{{{r_3}}} = \frac{1}{{\sqrt 2 }}\)
B \(\frac{{{r_1}}}{{{r_2}}} = \frac{2}{3}\) và \(\frac{{{r_2}}}{{{r_3}}} = \frac{1}{{\sqrt 3 }}\)
C \(\frac{{{r_1}}}{{{r_2}}} = \frac{1}{3}\) và \(\frac{{{r_2}}}{{{r_3}}} = \frac{1}{{\sqrt 3 }}\)
D \(\frac{{{r_1}}}{{{r_2}}} = \frac{1}{3}\) và \(\frac{{{r_2}}}{{{r_3}}} = \frac{1}{{3\sqrt 3 }}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán THPT Chuyên Lương Thế Vinh - Đồng Nai - lần 2 - năm 2018 (có lời giải chi tiết)