Trong mặt phẳng tọa độ Oxy, gọi \(\left( {{H_1}} \...

Câu hỏi: Trong mặt phẳng tọa độ Oxy, gọi \(\left( {{H_1}} \right)\) là hình phẳng giới hạn bởi các đường \(y = \frac{{{x^2}}}{4};\,\,y =  - \frac{{{x^2}}}{4};\,\,x =  - 4;\,\,x = 4\) và \(\left( {{H_2}} \right)\) là hình gồm tất cả các điểm \(\left( {x;y} \right)\) thỏa \({x^2} + {y^2} \le 16;\,\,{x^2} + {\left( {y - 2} \right)^2} \ge 4;\,\,{x^2} + {\left( {y + 2} \right)^2} \ge 4\). Cho \(\left( {{H_1}} \right)\) và \(\left( {{H_2}} \right)\) quanh quanh trục Oy ta được các vật thể có thể tích là \({V_1},\,\,{V_2}\). Đẳng thức nào sau đây đúng ?

A  \({V_1} = \frac{1}{2}{V_2}\)                            

B  \({V_1} = {V_2}\)                                

C  \({V_1} = \frac{2}{3}{V_2}\)                            

D  \({V_1} = 2{V_2}\)