Cho hàm số \(y = \sin {x^{\sqrt {\cos x} }}\) ta c...

Câu hỏi: Cho hàm số \(y = \sin {x^{\sqrt {\cos x} }}\) ta có:

A \(y'({\pi  \over 4}) = {e^{{{ - 1} \over {2\root 4 \of 2 }}\ln 2}}({1 \over {\root 4 \of 2 }} + {1 \over {4\root 4 \of 2 }}\ln 2)\)

B \(y'({\pi  \over 4}) = {e^{{{ - 1} \over {2\sqrt 2 }}\ln 2}}({1 \over {\sqrt 2 }} + {1 \over {2\sqrt 2 }}\ln 2)\)

C \(y'({\pi  \over 4}) = {e^{{1 \over {2\root 4 \of 2 }}\ln 2}}({1 \over {\root 4 \of 2 }} + {1 \over {4\root 4 \of 2 }}\ln 2)\)

D \(y'({\pi  \over 4}) = {e^{{1 \over {2\sqrt 2 }}\ln 2}}({1 \over {\sqrt 2 }} - {1 \over {2\sqrt 2 }}\ln 2)\)